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Abstract

We present a simple superfield Lagrangian for massive supergravity. It comprises
the minimal supergravity Lagrangian with interactions as well as mass terms for the
metric superfield and the chiral compensator. This is the natural generalization of
the Fierz-Pauli Lagrangian for massive gravity which comprises mass terms for the
metric and its trace. We show that the on-shell bosonic and fermionic fields are de-
generate and have the appropriate spins: 2, 3/2, 3/2 and 1. We then study this
interacting Lagrangian using goldstone superfields. We find that a chiral multiplet of
goldstones gets a kinetic term through mixing, just as the scalar goldstone does in the
non-supersymmetric case. This produces Planck scale (MPl) interactions with matter
and all the discontinuities and unitarity bounds associated with massive gravity. In
particular, the scale of strong coupling is (MPlm

4)1/5, where m is the multiplet’s mass.
Next, we consider applications of massive supergravity to deconstruction. We estimate
various quantum effects which generate non-local operators in theory space. As an
example, we show that the single massive supergravity multiplet in a 2-site model can
serve the function of an extra dimension in anomaly mediation.

1thomas.gregoire@cern.ch
2mdschwartz@lbl.gov
3yshadmi@physics.technion.ac.il

http://arXiv.org/abs/hep-th/0403224v2


1 Introduction

Only a handful of papers have been written on massive supergravity [1–5]. In fact, it seems
that little is known beyond the free theory, and for good reason. Massless supergravity
is complicated enough and at least it is constrained by powerful gauge symmetries which
a mass must break. Moreover, the physical graviton is massless and the gravitino cannot
be, so a theory in which the graviton and gravitino have degenerate nonzero mass cannot
describe the real world. Thus, an interacting theory of massive supergravity may seem to
be a difficult and phenomenologically irrelevant mathematical exercise. At least, that is the
situation if one ignores recent developments in extra dimensions, supersymmetry breaking,
massive gravity and deconstruction.

First, if there are compact extra dimensions and supersymmetry, then there will be
massive supergravity multiplets at the compactification scale. Since it is conceivable that
this scale will be accessible at future colliders, it would be nice to have a theory for the
particles which may show up. As a first step in this direction, we write down an interacting
supergravity theory containing massive and massless supergravity multiplets.

But even if the extra dimensions are very small, massive supergravity may play a
crucial role in the low-energy theory. This is the case, for example, in models of anomaly
mediation, in which supersymmetry breaking occurs on a hidden brane sequestered from
the standard model by some distance in a fifth dimension [6]. The basic idea in these
models is that dangerous couplings of the visible and hidden sectors are constrained by
locality in the fifth dimension. It is natural to assume that such couplings are absent at
tree level, and then loop corrections are appropriately suppressed by the size of the extra
dimension. Of course, these quantum effects must be the same in the 4D effective theory
obtained after integrating out the extra dimension. Therefore, in the 4D theory, 5D locality
must manifest itself somehow in the regulation of divergent graviton exchange diagrams
by massive KK states. To understand this, we need an interacting theory of massive
supergravity. And then we can apply the methods of dimensional deconstruction [7–9]
which have been developed for gauge theory. This is the subject of Sections 7 and 8.

In addition to these phenomenologically inspired motivations, there are a number
of more theoretical questions we may ask about massive supergravity. Massive (non-
supersymmetric) gravity is a very peculiar theory, and we might hope that by adding
supersymmetry we might gain insight into, or resolve some of these peculiarities. For ex-
ample, there is a factor of 4/3 difference between tree level processes involving a massless
graviton as compared to a graviton with an infinitesimally small mass [10,11]. So we may
ask: if light passed by a supersymmetric sun, would its angle of deflection change discon-
tinuously as we take the mass of the supergravity multiplet to zero? In general, we would
like to know whether each such classical phenomenon has a supersymmetric analog.

Massive gravity is also fascinating, theoretically, at the quantum level [12]. For example,
if we try to discretize a gravitational dimension, consistency requirements in the quantum
theory force us to keep the lattice spacing much larger than the Planck length [13,14]. To
approach the continuum limit, we must explicitly add interactions among distant lattice
sites. One might hope that if supersymmetry is essential for regulating gravity, it would
manifest its influence on some of these classical or quantum phenomena. In Section 6
we consider this possibility, but show that adding supersymmetry does not make massive
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gravity any less eccentric.
Now, to answer any physical question about massive supergravity, we need an inter-

acting Lagrangian. As a start, we should look for a free theory guaranteeing the correct
on-shell degrees of freedom [1–4]. We prefer to use superfields, as in [1], rather than compo-
nents because we expect the mass term to preserve global N = 1 supersymmetry. However,
we will not use the Lagrangians of [1]. These involve auxiliary fields not present in any
known off-shell formulation of massless supergravity, and therefore they are difficult to
generalize to the interacting case. In particular, it is hard to tell which symmetries are
broken by the mass term because we do not know how all the fields transform under the
symmetry group of supergravity. This issue will be explored in Section 2, and we reproduce
and examine the work of [1] in Section 3.2.

We construct an improved linearized Lagrangian in Section 3 using the simple and
powerful formalism of superspin projectors [15,16]. Conveniently, it ends up being exactly
the linearized Lagrangian for old minimal supergravity with the addition of mass terms for
the metric superfield Hm and the chiral compensator eΣ. The compensator’s mass requires
the introduction of a real superfield P , which acts as a prepotential: Σ = −1

4D̄
2P . And

the action, once we add the interactions of massless supergravity, can be written as:

S =

∫

d8z

{

E−1[Hm,Σ] +m2H2
m +

9

4
m2P 2

}

. (1)

Here, E−1[Hm,Σ] is inverse of the supervierbein superdeterminant, written as a functional
of Hm and Σ. For m = 0, (1) reduces to the action for massless supergravity [17,18].

Already, one can see the relevance of massive supergravity to 5D physics. The action
(1) shares many features with a recent parameterization of of 5D supergravity in terms of
4D superfields [19]. Indeed, this clearly written and practical paper inspired many aspects
of our current approach. However, not only is the presentation in [19] confined to the free
theory, but it includes additional auxiliary fields whose function in the 4D effective action
is unknown. Refs. [3,4], which derive a Lagrangian from string theory, suffer from the same
drawbacks. We found that in order to isolate the relevant degrees of freedom for just the
massive supergravity multiplet, we had to rederive the free Lagrangian from a 4D point of
view. We will comment more on the additional fields in the section on deconstruction (§7).

While the concise form of the action (1) has a certain utility, it completely obscures the
propagating degrees of freedom. Nevertheless, after performing judicious field redefinitions
and integrating out the auxiliary fields, the action reduces to:

S =

∫

d4x
√
gR[g]− 1

4
m2(h2

mn − h2)

−1

4
F 2

mn −
1

2
m2A2

m −
1

2
εmnpqψmγn∂pψ̄q +

1

4
mψ̄m[γn, γm]ψn + · · · . (2)

This contains the correct on-shell kinetic terms for a massive supergravity multiplet: a
real spin-2, a real spin-1, and a complex Dirac spin-3/2 degree of freedom, all degenerate
in mass. Indeed, the on-shell quadratic Lagrangian is fixed completely by unitary and
global supersymmetry, and so that part of (2) matches previous results [2]. The · · · are
interactions. In contrast to the non-supersymmetric case, some of these interactions are
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proportional to m. We explain the significance of this is Section 4, where the bosonic and
fermionic component analysis of the linearized theory is worked out in full detail.

Note that the first line of (2) makes up the interacting Fierz-Pauli Lagrangian for
massive non-supersymmetric gravity. One can see that (1) is the natural supersymmetric
generalization of Fierz-Pauli – the tuning of supersymmetric mass terms H2

m and P 2 to
have the ratio 9/4 serves the same function as tuning the h2

mn and h2 parts of Fierz-Pauli
to have the ratio −1. These particular combinations eliminate the negative energy degrees
of freedom. This can be shown through the equations of motion of either theory, but
it is much clearer when we introduce goldstones to represent the dangerous modes. The
goldstone formalism is especially useful because it reveals the scale at which these negative
norm ghosts come in to haunt us. That is, it shows the energy scale at which the effective
theory breaks down, and below which the tuning of the mass terms in Fierz-Pauli, and in
(1) are technically natural. In both cases it is at energy Λ5 = (MPlm

4)1/5.
The goldstones are the degrees of freedom that the massive theory has and the mass-

less theory lacks. Essentially, in the massless theory, we can set them to zero by a gauge
transformation. So to understand the goldstones, we need to comprehend and to param-
eterize the invariance of massless supergravity. There are many ways to do this, none of
which we find to be particularly natural or transparent. In Section 5 we discuss some of
the relevant issues, and present the set of transformations which we have found to be most
straightforward. This lets us isolate the strongest interactions, which turn out to be among
a chiral multiplet of goldstones. This multiplet contains the scalar longitudinal mode of
the graviton, as well as the longitudinal modes of Am and ψ̄m from (2).

In Section 7 we show how to use the massive supergravity Lagrangian (1) to decon-
struct 5D supergravity theories. We work out the natural size of the relevant UV and IR
dominated contributions to operators in the effective theory. This lets us see how well
deconstruction can reproduce the effect of sequestering within the effective theory. Section
8 applies these rules to a deconstructed version of anomaly mediation.

Throughout this paper, we try to stick to the supersymmetry conventions of Wess and
Bagger [20]. Also, to be clear, the terms vector and scalar refer to the external indices
on a multiplet of field (Vm is a vector) while spin-0 and spin-1 refer to the irreducible
representations of the Lorentz group. Contracted indices are often omitted if there is no
ambiguity, for example (∂A) = ∂mAm and (∂∂h) = hmn,m,n. We never use curved space
notation; indices are raised and lowered with the flat space Minkowski metric ηmn and with
σm

αα̇.

2 Non-supersymmetric examples

Before we begin to justify equation (1), and study its properties, we will investigate some
of the critical issues in a non-supersymmetric setting. To begin, recall the Fierz-Pauli
Lagrangian:

LFP =
1

2
hmn�hmn + h2

mn,n + h(∂∂h)− 1

2
h�h− 1

2
m2(h2

mn − h2) . (3)

This is the unique quadratic Lagrangian constructed out of a single two-index tensor which
propagates a spin-2 field and is free of tachyons and ghosts. It is conveniently related to
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the Einstein Lagrangian expanded around flat space gmn = ηmn + hmn:

M2
Pl

√
gR− 1

4
M2

Plm
2(h2

mn − h2) =
1

2
M2

PlLFP + interactions . (4)

These interactions are in some sense arbitrary, as the Lagrangian no longer has exact
general-coordinate invariance (GC). In fact, (4) now leads to amplitudes which violate
unitarity well below MPl, at energies E ∼ Λ5 = (MPlm

4)1/5. It could be better: one can
raise the strong couping scale to Λ3 = (MPlm

2)1/3 by adding additional terms to (4)4.
However, it could also be worse: if the tensor structure of the two derivative interactions
were completely arbitrary, that is, not protected by a custodial GC symmetry, the theory
would lead to unitarity violation at Λ7 = (MPlm

6)1/7 < Λ5. But if the interactions in (4)
were arbitrary, we would have a bigger problem: when m = 0 the theory does not look like
gravity! And so MPl has no physical interpretation.

This last point is worth emphasizing. It is essential that LFP looks like linearized
Einstein gravity, with its linearized symmetries, for m = 0. Moreover, we also must be
able to identify the auxiliary fields which appear in the massive sector so that we understand
how the symmetries are broken. For example, consider the following Lagrangian:

LA =
1

2
hmn�hmn + h2

mn,n + h(∂∂h)− 1

2
h�h

−1

2
m2h2

mn −mAm(hmn,n − h,m)− 1

8
(Am,n −An,m)2 +

3

4
m2A2

m . (5)

At first glance, this Lagrangian seems to comprise a spin-2 and a spin-1 field. But observe
that there is a bilinear coupling between them. In fact, there are only the on-shell degrees
of freedom of a massive spin-2 field; the equations of motion force Am = hmn,n = h = 0. So
this Lagrangian is a perfectly viable alternative to LFP (3), at the quadratic level. However,
when we embed the first line in

√
gR and setm = 0, we are left with an additional free vector

field with no obvious physical interpretation. Thus, when we turn the mass back on, we are
stuck in unitary gauge. That is, we cannot study the interacting theory using goldstones,
as we do not know what symmetry these goldstones are supposed to realize. Moreover, it
is not possible to turn (5) into LFP through some straightforward field redefinition.5

Now, in the supersymmetric case, it is somewhat easier to produce an analog of LA

(5) than of LFP (3). The difficulty arises because the metric is in the θσnθ̄hmn component
of a real vector superfield Hm. So it is easy to write down the mass term

∫

d4θH2
m =

∫

d4xh2
mn + · · · but difficult to project out the trace. Thus, we can get all the quadratic h

terms in LA without much work, but not those of LFP. The solution, of course, is to use
the conformal compensator. In the non-supersymmetric case, it works as follows.

Start with LFP embedded in GR (4). We can rewrite it slightly by introducing an
auxiliary scalar field s:

Ls = 2
√
gR[g]− 1

2
m2h2

mn + 2m2sh− 2m2s2 . (6)

4Λ3 is the best one can do with a single spin-2 field. If the massive graviton is the first Kaluza-Klein
mode of a 5D theory, the additional KK modes raise the strong coupling scale to M5D = Λ2/3.

5It is possible to show that (3) and (5) are dual, in the sense that they are gauge fixed versions of a new
mother Lagrangian with an additional U(1) symmetry.
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Setting s to its equation of motion reproduces (4). Then observe that

Ls = 2
√
gR[g]− 1

2
m2(e−2sgmn − ηmn)2 + 6m2s2 + · · · (7)

= 2
√

e2sĝR[e2sĝ]− 1

2
m2ĥ

2
mn + 6m2s2 + · · · , (8)

where ĝmn = e−2sgmn, ĥmn = ĝmn − ηmn, and · · · are cubic and higher order terms. The
awkward trace termm2h2 has been replaced by a mass term for the conformal compensator.
Moreover, the Lagrangian is now Weyl invariant when we set m = 0. Of course, this Weyl
invariance is a complete fake, as we can just use it to set s = 0. But clearly the form (8)
suggests that we should be able to find a massive supergravity Lagrangian with the features
of (1): mass terms for the metric and conformal compensator, and conformal invariance in
the massless limit.

3 Constructing the Linearized Theory

Without further introduction, we will now study the massive supergravity Lagrangian.
We will start by trying to derive a linearized Lagrangian which is the supersymmetric
version of LFP. This is essentially the approach of [1]. But since we hope to embed our
linear Lagrangian in an interacting theory, we have the additional requirement that our
Lagrangian match some known formulation of supergravity when m = 0.

The most (mathematically) transparent way to construct Lagrangians for higher-spin
fields is through projectors [15–18]. (See also [21] for a succinct application in the massless
case). For example, the spin-0 and spin-1 projectors for a Lorentz vector are:

ωmn =
∂m∂n

�
and θmn = ηmn − ωmn . (9)

This assures us that a Lagrangian like

L =
1

2
Am�θmnAn = −1

4
F 2

mn (10)

contains only spin-1 degrees of freedom. Moreover, because the projectors are orthogonal
(θω = ωθ = 0), this Lagrangian automatically has a gauge invariance under A→ A+ωδA.
So the spin content and symmetries can basically be read off the projectors appearing in
the Lagrangian.

In supersymmetry, projectors are almost always used, whether or not they are acknowl-
edged. For a general scalar superfield Ψ, we can isolate the linear (D̄2ΨL = D2ΨL = 0),
chiral (D̄Ψ+ = 0) and antichiral (DΨ− = 0) sectors with:

PL = − 1

8�
DαD̄2Dα (11)

P+ =
1

16

D̄2D2

�
P− =

1

16

D2D̄2

�
(12)
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PC ≡ P+ + P− . (13)

PC projects out the real chiral part (= Φ + Φ̄ for chiral Φ) of a real superfield and will be
very handy in what follows. For a gauge field in a real scalar superfield VR, the physical
field strength involves only PLVR and the gauge degrees of freedom are purely PCVR.

The graviton and gravitino belong to a supergravity or superspin-3
2 multiplet. The

smallest field containing such a supergravity multiplet is a real vector superfield Hm. Nat-
urally, this is the metric superfield which appears in superfield formulations of supergravity.
It has superspin components

Hm =
3

2
⊕ 1⊕ 1

2
⊕ 1

2
⊕ 0 . (14)

We can isolate these components with a set of non-local projection operators:

Π0
mn ≡ ωmnPC (15)

Π1/2
mn ≡ ωmnPL (16)

Π3/2
mn ≡ −

1

48
σαα̇

m [Dα, D̄α][Dβ , D̄β̇ ]σββ̇
n −

1

8
DαD̄2Dαδmn − ωmn +

2

3
Π0

mn (17)

Π1/2(T )
mn ≡ 1

48
σαα̇

m [Dα, D̄α][Dβ, D̄β̇ ]σββ̇
n −Π0

mn (18)

Π1
mn ≡ δmn −Π0

mn −Π1/2(L)
mn −Π1/2(T )

mn −Π3/2
mn . (19)

These are defined for conciseness in terms of the vector projector ωmn (9) and the scalar

superfield projectors (11)-(13). We will not make use of Π1
mn or Π

1/2(T )
mn and include them

only for completeness.

3.1 Massive Supergravity

Now we would like to choose our Lagrangian, following (10) as simply

L = Hm�Π3/2
mnHn +m2H2

m . (20)

But this Lagrangian, in contrast to (10), is non-local. To make it local, we must include
another projector. The simplest choice is Π0 which leads to:

L0 = −Hm�Π3/2
mnHn +

2

3
Hm�Π0

mnHn +m2H2
m (21)

=
1

48
Hmσ

αα̇
m [Dα, D̄α][Dβ , D̄β̇ ]σββ̇

n Hn +
1

8
HmD

αD̄2DαHm − (∂H)2 +m2H2
m . (22)

While this Lagrangian is local, (21) shows that an additional superspin-0 degree of freedom
(Π0H)m propagates, but with the opposite sign kinetic term from (Π3/2H)m. So one must
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be a ghost. The resolution is to introduce a new auxiliary chiral field Φ whose equations
of motion force Φ = (Π0H)m = 0. This will be the chiral compensator. If we rewrote the
Fierz-Pauli Lagrangian in projector language, we would see that the metric trace h serves
an analogous purpose: its equations of motion force h = hmn,mn = 0 [22].

We can isolate the ghost (Π0H)m by defining:

H ≡ ∂mHm = HC +HL , (23)

where HC = PCH is a real chiral field, containing superspin-0, and HL = PLH is linear
and contains superspin-1. Then the sector of L0 involving HC is:

LC = −2

3
H2

C −HC

m2

�
HC . (24)

Thus, we introduce a new real chiral field ΨC and expand (24) to

LC = −2

3
(HC −ΨC)2 − (HC −ΨC)

m2

�
(HC + ΨC) . (25)

It is then straightforward to see that the equations of motion for HC + ΨC and HC −ΨC

force HC = ΨC = 0.
To represent (25) as a local Lagrangian note that any real chiral field can be written

as ΨC = 3
2 i(Σ− Σ̄), with Σ chiral. And any chiral field can be written as Σ = −1

4D̄
2P for

real P . Thus,

ΨC =
3

2
i(Σ − Σ̄) = −3

8
i(D̄2P −D2P ) . (26)

Then we have, using (12) and integrating by parts:

∫

d8zΨC
1

�
ΨC = − 9

32

∫

d8zD2P
1

�
D̄2P =

9

4

∫

d8zP 2 . (27)

So,

LC = −2

3
(HC −

3

2
i(Σ− Σ̄))2 −HC

m2

�
HC +

9

4
m2P 2 . (28)

The complete quadratic Lagrangian is now local:

L = −Hm�(Π3/2H)m +
2

3
Hm�(Π0H)m +m2H2

m + 2iHC(Σ− Σ̄)− 3Σ̄Σ +
9

4
m2P 2 (29)

=
1

48
Hmσαα̇

m [Dα, D̄α̇][Dβ , D̄β̇ ]σββ̇
n Hn +

1

8
HmD

αD̄2DαHm − (∂H)2

+2i(Σ − Σ̄)(∂H)− 3Σ̄Σ +m2H2
m +

9

4
m2P 2 . (30)

In the massless limit, this is the linearized version of the old-minimal supergravity La-
grangian with the chiral compensator [17].

We can check the Lagrangian by introducing goldstones. At the linearized level, there
is a set of longitudinal gauge transformations which correspond to

Hm → Hm + ∂mGR (31)
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for a real superfield GR. Thus, H = (∂H) → H + �GR. And, because the massless
part of the Lagrangian is invariant under this gauge transformation, we can read off the
transformation of ΨC from the first term in (25): ΨC → ΨC +�GC . Then GR = GC +GL

comes in as

LC ⊃ −(H −ΨC)
m2

�
(H + ΨC) (32)

→ −m2GL�GL − 2m2(HC −ΨC)GC + · · · . (33)

This is exactly what we should expect. The linear part of GR, GL, is a real multiplet
with gauge invariance, so it contains the vector longitudinal modes. These get the correct
kinetic term:

GL�GL = GLD
αD̄2DαGL . (34)

The real chiral part of GR, GC , contains the scalar longitudinal mode of the graviton. It
gets a kinetic term from mixing with HC − ΨC . So the whole goldstone formalism for
gravity, developed in [12] goes over beautifully to the supersymmetric case.

We will reproduce this argument more carefully in Section 5 after we have proved the
correctness of the linearized theory at the component level, and reviewed the non-linear
transformations of supergravity. But first, we will comment on some alternatives to (30).

3.2 Alternative Free Lagrangians

In a recent paper [1], two candidate (free) Lagrangians for massive gravity were suggested,
neither of which match (30). Since these Lagrangians were only presented at the linearized
level, it is unclear how to add interactions in a consistent way. In this section, we rederive
them and explain why they are not promising candidates for a non-linear theory.

We observed above that the simple Lagrangian involving only the superspin-3
2 projector

is non-local, so we must include other superspin components, for example Π0 or Π1. Let us
allow for an arbitrary linear combination of these two projectors. Then the general local
Lagrangian is:

LH = −Hm�Π3/2
mnHn + α

2

3
Hm�Π0

mnHn + (1− α)
2

3
Hm�Π1/2

mnHn +m2H2
m (35)

= L3/2 + (1− α)
2

3
HLHL − α

2

3
HCHC −H

m2

�
H , (36)

where H = ∂mHm = HL + HC are the same objects from Section 3.1. Now we want to
introduce a real auxiliary superfield ΨR so that the equations of motion enforce H = ΨR =
0. Then the most general local Lagrangian involving H and ΨR is:

LHΨ =
2(1 − α)

3
HPLH −

2α

3
HPCH −

m2

�
H2 +

4

3
ΨRH

+
1

2
β1ΨR�PLΨR +

1

2
β2ΨR�PCΨR +

1

2
γΨR

2

Substituting the equation of motion for ΨR into that of H gives:

(β1�PL + β2�PC + γ)(
4(1 − α)

3
�PL −

4α

3
�PC − 2m2)H =

16

9
�H . (37)
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Since PLPC = PCPL = 0 and PC + PL = 1 there are two distinct solutions which force
H = ΨR = 0. The first has α = 0 and so only involves the Π1 projector:

Lα=0
HΨ =

2

3
(HL + ΨL)2 − m2

�
H2

L −
1

�

(

mHC −
2

3m
�ΨC

)2

+
2

3
Ψ2

C (38)

=
1

48
Hmσ

αα̇
m [Dα, D̄α][Dβ, D̄β̇ ]σββ̇

n Hn +
1

8
HmD

αD̄2DαHm −
1

3
(∂mHm)2 +m2H2

m (39)

+
4

3
ΨR∂mH

m +
2

3
Ψ2

R −ΨR
{D2, D̄2}

36m2
ΨR . (40)

The second has α = 1 and only involves the Π0 projector:

Lα=1
HΨ = −2

3
(HC −ΨC)2 − m2

�
H2

C −
1

�

(

mHL −
2

3m
�ΨL

)2

− 2

3
Ψ2

L (41)

=
1

48
Hmσ

αα̇
m [Dα, D̄α][Dβ , D̄β̇ ]σββ̇

n Hn +
1

8
HmD

αD̄2DαHm − (∂mHm)2 +m2H2
m (42)

+
4

3
ΨR∂mH

m − 2

3
Ψ2

R −ΨR
DαD̄2Dα

18m2
ΨR . (43)

These are the two solutions given in [1].
Let us consider these two solutions in turn. For the first solution, α = 0, if we take

m→ 0 then ΨC decouples. We are left with a linearized supergravity theory with a vector
auxiliary field. As discussed in [1] and [21] there is no known interacting theory of super-
gravity with this auxiliary multiplet structure. It is similar to new-minimal supergravity,
and equivalent at the linearized level. But we do not know how to add interactions in a
consistent way and we cannot approach the non-linear theory without solving the much
harder problem of generating a new formulation of supergravity.

For the α = 1 theory, the m→ 0 limit decouples ΨL and we are left with old-minimal
supergravity with the chiral compensator set to zero. So in this case, we can in principle
consider an interacting theory. However, the component form has a bosonic sector which
is essentially equivalent to (5). There is a propagating vector field which simply does not
decouple. In superfield terms, we have a real field ΨR which is not related in any way to
the auxiliary fields of the massless sector.

4 Components

To show that the formal procedure of the previous section is mathematically sound, and to
get a more practical understanding of the Lagrangian, we will now work out the components
of equation (30). We use the notation | to indicate evaluation at θ = θ̄ = 0.

For the metric superfield we define

Hn| = An − 1

4
D2Hn| = Fn − 1

4
σαα̇

m [Dα, D̄α̇]Hn| = V n
m

1

32
{D2, D̄2}Hn| = Dn+

1

2
�An

9
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16
σ̄mβ̇βD̄2DβHαβ̇| = ψm

α DαHm| = χαm (44)

and pull off the symmetric, antisymmetric and trace parts of V n
m

Vnm = vmn + ωmn +
1

4
ηmnh (45)

vmn − vnm = ωmn + ωnm = vmm = 0 . (46)

For the prepotential of the chiral compensator, we define

P | = p − 1

4
D̄2P | = 1

2
(s+ it) − 1

4
σαα̇

m [Dα, D̄α̇]P | = bm
1

32
{D2, D̄2}P | = d (47)

DαP | = iλα − 1

4
DαD̄

2P | = ζα . (48)

Then, after an invigorating calculation, the linearized Lagrangian (30) turns into:

L =
1

2
vmn�vmn + (∂mvmn)2 − 1

6
(h− 6s)(∂∂v)− 1

48
(h− 6s)�(h− 6s) (49)

+
4

3
(Dm +

1

4
Ωm −

3

4
t,m +

1

2
∂A,m)2 − 4

3
|(∂F ) +

3

4
(∂b)− 3

2
id|2 (50)

+m2

[

−1

2
v2
mn −

1

2
ω2

mn −
1

8
h2 +

9

8
s2 +

9

8
t2 +

1

2
Am�Am + 2D · A+ 2|Fm|2 (51)

+
9

2
pd− 9

8
p�p̄− 9

8
b2m

]

(52)

−2iψ̄n(σ̄pσmσ̄n)∂mψp − (
4

3
iψnσm∂nψ̄m + h.c) + (−2

3
i∂nχ̄nσ̄mσp∂pψ̄m + h. c.) (53)

−2

3
i∂p∂nχ̄nσ̄p∂mχm + (i∂nχ̄nσm∂mζ + h. c.) + i

3

2
ζ̄σm∂mζ + (

1

2
i∂ρψnσpσ̄nζ + h. c.) (54)

+m2

[

−(iχmσnσ̄mψn + h.c) +
9i

4
λσm∂mλ̄− iχmσn∂nχ̄m −

9i

4
λζ +

9i

4
λ̄ζ̄

]

, (55)

where Ωm = εmnpq∂nωpq.
Notice the convenient grouping in (49) and (50). The linearized gauge invariance of

the massless sector can practically be read off the Lagrangian. If not for the mass term,
we could use this symmetry to go to a gauge where ω = A = F = χ = t = s = λ = ζ = 0.
However, we have broken the gauge invariance, and the best we can do is perform field
redefinitions:

h→ −3h+ 6s (56)

10



d→ d+
1

3
(i∂F − i∂F̄ ) (57)

bm → 2bm −
2

3
(Fm + F̄m) (58)

Fm → Fm −
3

4
ip,m (59)

t→ t− 2

3
∂A (60)

Dm → Dm −
1

4
Ωm −

3

4
t,m (61)

ψp →
i

2
√

2
(ψR

p −
1

2
σpσ̄qψ

R
q )− 3

4
iσpζ̄ −

1

2
σp∂qχ̄q . (62)

Thus, using the conventional hmn = vmn + 1
4ηmnh, replacing χq = 1√

2
ψL

q , and rescaling

s, bm, λ, d and ζ by a factor of 2
3 each, we have:

L =
1

2
hmn�hmn + h2

mn,m + h(∂∂h)− 1

2
h�h− 4

3
d2 − 4

3
(∂b)2 +

4

3
D2

m (63)

−1

2
εmnpqψR

mσn∂pψ̄
R
q (64)

+m2

[

−1

2
h2

mn − h2 + 3hs−3

2
s2 + 3dp− 2b2m −

1

2
(Fm − F̄m)2 − 1

2
bm(Fm + F̄m) (65)

+
1

2
t2 − 1

2
ω2

mn +
1

2
Am�Am + 2DmAm −

1

2
ΩmAm +

1

2
(∂A)2 (66)

+
1

4
ψL

m[σn, σ̄m]ψR
n + h. c.+ iλσm∂mλ̄− iλζ + iλ̄ζ̄ (67)

+
1√
2

(

ζσmψ
L
m + h. c.

)

− i

4
ψL

m(σmσ̄nσp + σpσ̄nσm)∂nψ̄
L
p

]

. (68)

The massless sector of this Lagrangian now looks like supergravity in Wess-Zumino
gauge. There is the correct kinetic term for the spin-2 and spin-3

2 fields and the auxiliary
vector and complex scalar forming the off-shell supergravity multiplet. In this form, it is not
hard to integrate out the auxiliary fields, which leads to the on-shell quadratic Lagrangian

L =
1

2
hmn�hmn + h2

mn,m + h(∂∂h)− 1

2
h�h− 1

2
m2(h2

mn − h2)− 1

2
εmnpqψR

mσn∂pψ̄
R
q

−3

2
m2

[

1

4
(Am,n −An,m)2 +

1

2
m2A2

m

]

+m2

[

−1

2
εmnpqψL

mσn∂pψ̄
L
q +

1

4
ψL

m[σn, σm]ψR
n

]

(69)
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After rescaling, this is (2).
The field redefinitions that we made, like the gauge choice discussed above, eliminate

the dependence on ω,A,F , χ, t, s, λ and ζ in the massless sector. This follows, of course,
from the fact that gauge transformations are field redefinitions. But it also illustrates that
if we perform, as a field redefinition, the non-linear transformation which puts the fields
in a particular gauge, it will produce interactions in the massive sector of the Lagrangian.
As we will show in the next two sections, it is much easier to study the interactions by
introducing goldstones directly in terms of superfields. But it is also useful to see, at
least schematically, the fields responsible for strong coupling by introducing component
goldstones into the on-shell Lagrangian (69).

We need vector and scalar goldstones for hmn, a scalar goldstone for Am, and goldstinos
for ψR and ψL

hmn,n → hmn,n + πh
m,n + φh

,m,n (70)

Am → Am + φA
,m (71)

ψR,L
m → ψR,L

m + χR,L
,m . (72)

Then, putting back the M2
Pl multiplying (69), the kinetic terms are schematically

L→M2
Pl

{

h∂2h+ ψ̄
R
∂ψR

}

(73)

+M2
Plm

2
{

A�A+ ψ̄
L
∂ψL + h∂2φh + ψ̄

L
∂χR + ψ̄

R
∂χL + πh∂2πh

}

+M2
Plm

4φA�φA (74)

From this we can read off the canonical normalizations. For example, hc = MPlh and then
because of the kinetic mixing, φh

c = MPlm
2φh. We find that φh, φA, and χL all get factors

of MPlm
2 in their normalization. This is perfectly consistent with supersymmetry, as they

fall into a chiral multiplet. If we were to work out the higher order terms in the on-shell
Lagrangian, they would include interactions of φh, φA, and χL with the characteristic
scale Λ5 ≡ (MPlm

4)1/5. But as we have mentioned, it is significantly easier to work with
superfields, as we will see in Section 6.

5 Non-linear theory

To study the interacting theory, we proceed in a way similar to [12]. The idea is to
restore local supersymmetry to the action (1) by introducing goldstone superfields. By the
goldstone equivalence theorem, these represent the longitudinal degrees of freedom which
become strongly coupled at high energy. To introduce the goldstones, we will perform a
finite supergravity transformation on (1), parameterized by a superfield Lα. Because (1)
is not invariant, the Lagrangian will then depend on Lα. If we now interpret Lα as a field,
it contains the goldstones. The new Lagrangian, with Lα, will be invariant, because we
can absorb an additional transformation in a shift of Lα. And so the restored symmetry
keeps the original supergravity fields transverse, and the strongly coupled longitudinal

12



modes appear in the goldstone fields. In order to carry out this procedure, we need the
finite supergravity transformations. In this section, we attempt to motivate and review
the formalism we have found most convenient [23] (see also [17–19]), and we work out the
transformations to second order. The interactions will be studied using the goldstones in
Section 6.

The natural starting point for non-linear supergravity is to consider local translations
of the form

Ψ(xm, θ, θ̄)→ Ψ(xm + δxm, θ + δθ, θ̄ + δ̄θ) , (75)

with δxm real and δθ a complex Weyl fermion. This is the natural generalization of general
coordinate transformations to real superspace. For constant δxm = iθσmδ̄θ − iδθσmθ̄ it is
just a global supersymmetry rotation.

However, as we will justify a posteriori, it is convenient to go further and consider local
translations of complex superspace

zM = (zm, θ, θ̄)→ (zm + δzm, θ + δθ, θ̄ + δθ̄) , (76)

where now δθ 6= (δθ̄). This group can be represented by

z → z′ = (eΛz) , (77)

where Λ is a complex supervector field:

Λ = ΛM∂M = Λm∂m +MαDα + N̄α̇D̄
α̇ . (78)

While δzM = ΛM holds only to first order, (78) is nevertheless a faithful representation of
(76) (more precisely, of contractible transformations, connected to the identity). Keep in
mind that in our conventions Λm∂m = −1

2Λαα̇∂αα̇.
Fields transform as

Ψ(z)→ Ψ′(z) = eΛΨ(z) . (79)

Note that (Ψ1Ψ2)
′ = Ψ′1Ψ

′
2 because of the identity (eΛΨ) = eΛΨe−Λ. Also note that we

normally deal with superfields Ψ(x) which depend only on real superspace. In that case,
one can still define an active transformation by Ψ(x)→ eΛΨ(x) but can no longer interpret
it as a passive coordinate shift.

As it is, with ΛM arbitrary superfields, this supergeneral coordinate transformation
(SUGC) group is too large. We will now restrict it. First, we want chiral fields to remain
chiral. Since

Φ→ eΛΦ = Φ + ΛΦ + · · · , (80)

we need
[D̄,Λ]Φ = 0 . (81)

This produces constraints on Mα and Λm which are solved by

Λαα̇ = −2iD̄α̇Lα Mα = −1

4
D̄2Lα , (82)

for an unconstrained spinor valued superfield Lα. At this point Nα is still unconstrained.
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The transformation Ψ → eΛΨ is for general superfields, so if we want antichiral fields
to remain antichiral we would need

[D,Λ]Φ̄ = 0 . (83)

To satisfy both (81) and (83) would restrict the group too much (down to non-susy GC).
So we need some other way of keeping antichiral fields antichiral. Enter the metric. We
take the metric H to be a real supervector field

H = Hm∂m +HαDα + H̄α̇D̄
α̇ , (84)

with Hm = H̄m . We make H transform as

e2iH → e2iH ′

= eΛ̄e2iHe−Λ . (85)

Now, we can define a covariantly antichiral field by

Φ̄
‡ ≡ e2iH Φ̄→ eΛ̄Φ̄

‡
. (86)

Since (81) implies [D, Λ̄]Φ̄ = 0, the antichirality of Φ̄
‡

is preserved.
Perturbatively,

H → H − i

2
(Λ̄− Λ) + [Λ + Λ̄,H]− i

2
[Λ, Λ̄] + · · · . (87)

So,

Hα → Hα +
i

2
(Mα −Nα) . (88)

Since Nα remains arbitrary, we can use it to set

Hα = 0 . (89)

Thus, Nα = Mα to first order, and the allowed SUGC transformations are determined
completely in terms of Lα.

Although we will not need it here, for clarity and completeness, the gauge condition to
next order is:

Nα = Mα −Hm(∂mM
α)− i

2
(Λ̄m − Λm)(i∂mM

α) + · · · . (90)

In contrast, the other gauge constraint (81), [D̄,Λ]Φ = 0, implies D̄eΛΦ = 0 so (82) does
not get further corrections.

In summary, with the conditions (81) and (89), the group of transformations z → (eΛz)
we want are determined completely by a spinor superfield Lα:

Λ = (iD̄α̇Lα)∂αα̇ + (−1

4
D̄2Lα)Dα + (−1

4
D2L̄α̇ + · · · )D̄α̇ . (91)

This group is a subgroup of complex SUGC representing superconformal transformations.
At the linearized level, it is also the gauge invariance associated to a massive superspin-3

2
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multiplet. As we discussed in Section 3, it is impossible to write down a local quadratic La-
grangian involving only superspin-3

2 . There, the chiral compensator came in as a Lagrange
multiplier forcing the other spins to vanish on shell. In the massless theory, one can use up
some of the superconformal invariance to set the compensator to zero. But the essential
relation between superconformal transformations and the superspin-3

2 field of supergravity
remains. From now on, we will take SUGC to mean just these symmetries, (91).

The non-linear generalization of constructing quadratic Lagrangians with linear invari-
ance is constructing invariant integrals. As in the non-supsersymmetric case, the integral
of a scalar is not invariant, and so we need to introduce scalar densities, the analog of√
g. But, in supergravity, it is difficult to construct a density out the metric Hm and

so we simply introduce the chiral compensator for this purpose. The transformation of a
supersymmetric scalar density, to first order, is described by right action of a supervector
field,

Ψ
←−
Λ ≡ (−1)εM∂M (ΛMΨ) = ∂m(ΛmΨ)−Dα(MαΨ)− D̄α̇(N̄

α̇
Ψ) . (92)

This is a total derivative, and can be used to construct invariant Kahler potentials. If we
only integrate over d2θ the D̄ term is not invariant and we must use

ΛCH ≡ Λm∂m +MαDα . (93)

So, for the non-linear theory, we define the chiral compensator e3Σ as a chiral density with
the transformation law

e3Σ → e3Σe
←−
ΛCH . (94)

Note that for a chiral field ΛΦ = ΛCHΦ. This lets us construct invariant superpotentials.
Indeed, one can check that for a chiral superpotential W ,

(e3Σe
←−
ΛCH)(eΛW ) = (e3ΣW )e

←−
ΛCH , (95)

and so
∫

d2θe3ΣW is invariant. There is also a way to construct Kahler potentials which are
invariant under finite transformations, involving bothH and e3Σ, but it is more complicated
and we will not present it here.

Expanding to second order, the transformations are:

δHαα̇ = D̄α̇Lα + iD̄β̇Lβ∂ββ̇Hαα̇ −
1

4
(D̄2Lβ)DβHαα̇ − iHββ̇∂ββ̇D̄α̇Lα

−iσmβ̇β(D̄β̇Lβ)∂mDαL̄α̇ −
1

4
(D̄2Lβ)Dβ(D̄α̇Lα −DαL̄α̇) + h. c. (96)

δΣ =
1

12
D̄2DαL

α +
1

96
D̄2(LαDαD̄

2DβL
β)− 1

4
D̄2(LαDαΣ) (97)

δP = −1

3
DαL

α − 1

24
(LαDαD̄

2DβL
β) + (LαDαΣ) + h. c. . (98)
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6 Interacting Goldstone Superfields

To study the interacting theory, we will now introduce goldstones. Because we have the
transformation laws entirely in terms of superfields, we can study the interactions in a
manifestly supersymmetric way. All of the goldstones fit into the spinor-valued real su-
perfield Lα. The strong interactions involve the longitudinal modes of the fields in this
multiplet, which we can isolate by writing Lα = DαGR for real GR. And the scalar lon-
gitudinal modes are contained in the real chiral part of GR, which we can isolate with
GR → GR + G + Ḡ. This G, without a subscript, is a chiral field. Therefore, we project
out the strongest modes by setting:

Lα =
i

2
DαG L̄

α̇
= − i

2
D̄α̇Ḡ, D̄G = 0 . (99)

This leads to the very simple form for the linear gauge transformations (91)

Λ = −2i(∂mG)∂m . (100)

These are coordinate transformations of the form δxm = ∂mG which include the scalar
longitudinal transformation, δhmn = Gh

,m,n leading to strong coupling in gravity. In fact,

this chiral multiplet effectively contains the component goldstones φh, φA and χL which
we began to analyze at the end of Section 4.

The second order transformations (96) and (98) are:

δHm = ∂m(G+Ḡ)−2i∂nG∂n∂mḠ+2i∂nḠ∂n∂mG−2i∂n(G−Ḡ)∂nH
m+2iHn∂n∂m(G−Ḡ)

δP =
i

6
D2G+

i

2
DαGDαD̄

2P − 1

6
DαG�DαG+ h. c. . (101)

So, at quadratic order, the mass terms become

m2

∫

H2
m +

9

4
P 2 → m2

∫

(Hm + ∂m(G+ Ḡ))2 +
9

4
(P +

i

6
D2G− i

6
D̄2Ḡ)2 . (102)

After an integration by parts and an application of the identity D̄2D2G = 16�G this
simplifies to

m2

∫

H2
m +

9

4
P 2 − 2(∂H − 3i

2
(Σ− Σ̄))(G + Ḡ) . (103)

As expected, the kinetic term for G has vanished, and G picks up a kinetic term from
mixing. Moreover, it mixes with the same combination of metric and compensator that
Σ itself does in the massless Lagrangian, (30). So we can undo the mixing with a Weyl
transformation Σ → Σ − iG, producing an an ordinary ḠG kinetic term. This is exactly
analogous to how the kinetic mixing works in non-supersymmetric massive gravity. Note
that this Weyl transformation will produce a coupling of G to matter with MPl strength.
So this coupling will remain even in the limit m→ 0. Therefore, there is a supersymmetric
analog of the vDVZ discontinuity [10,11].

To canonically normalize the fields, note that the metric and the compensator have ki-
netic terms in the massless action, which we have defined with a coefficient M2

Pl. Schemat-
ically,

L = M2
Pl(H∂

2H + Σ̄Σ) +M2
Plm

2(∂H + Σ)G . (104)
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So Hc
m = MPlHm, Σc = MPlΣ and Gc = MPlm

2G. If we had included the linear part of
the goldstone multiplet GR = GL +G+ Ḡ we would see that it gets a kinetic term from the
mass without mixing and is normalized by Gc

L = MPlmGL. But the chiral mode, G, has
the smallest kinetic term and the largest interactions. It is not hard to see that strongest
interactions come from terms cubic in G. Expanding the mass terms to next order order,we
have:

m2H2
m+

9

4
P 2 → −2i

MPlm4

(

−3∂aG
†
c�Gc∂aGc − 2∂aGc

†�Gc∂aG
†
c +Gc�Gc

†�Gc
†
)

+h. c.+· · ·

These vertices lead to amplitudes which violate unitarity at the energy (MPlm
4)1/5 ≡ Λ5.

So we take the cutoff to be Λ ∼ Λ5.
In a consistent effective field theory, naive dimensional analysis [24–26] tells us that we

must include all higher dimension operators suppressed by the cutoff. In supersymmetric
theories, the easiest way to keep the dimensions straight is to rescale θ to be dimensionless

by θ → θ̂√
Λ
. Then canonically normalized bosonic superfields, such as Ψ̂(x, θ̂√

Λ
,

ˆ̄θ√
Λ
) have

mass dimension 1. In our case, we know that because the goldstone field G is strongly
coupled at Λ, we must include operators in the Kahler potential like

Λ2

16π2

(

∂

Λ

)a
(

4πĜc

Λ

)b

=
Λ2

16π2

(

∂

Λ

)a
(

4πMPlm
2Ĝ

Λ3

)b

. (105)

We have included a (16π2)−1 in front as a loop factor, and a 4π next to G for canonical
normalization. Matching the a = 6, b = 3 term to the tree level expression enforces
Λ < (4π)1/5Λ5 ∼ 1.6 Λ5. Since we are neglecting factors of order 1, it is consistent to
ignore the 4π’s in the our analysis.

Now, G comes out of H, so the corresponding unitary gauge term is

Λ2

(

∂

Λ

)a
(

MPlm
2

Λ3

Ĥc

MPl

)b

= Λ2

(

∂

Λ

)a
(

ê
Ĥc

Λ

)b

. (106)

The important point is that the couplings of the transverse modes do not enter as Ĥc/Λ
but are down by a weak coupling factor of

ê ≡ m2

Λ2
=

(

m

MPl

)
2

5

. (107)

7 Dimensional Deconstruction

Now that we understand the Lagrangian for massive supergravity, we can string together an
extra dimension. This works essentially the same way for supergravity as it does for gauge
theories. To construct an N -site model, we begin with N independent 4D supergravity
theories:

S =

∫

d4xd4θ
∑

j

M2
j E−1[Hm

j ,Σj ] . (108)
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Mj are the Planck scales on each site, which we may take to be distinct. Note that there is
only one set of coordinates, but the Lagrangian is invariant under N copies of SUGC. Now
we add nearest-neighbor interactions which break SUGCN down to the diagonal SUGC
subgroup:

LU =
∑

j

M2
j E−1[Hm

j ,Σj] +M2
j m

2
j

{

(Hm
j+1 −Hm

j )2 +
9

4
(P j+1 − P j)

2 + · · ·j
}

. (109)

Here, mj characterize the masses. If we set Mj = M and mj = m then the theory
contains a tower of massive supergravity multiplets with couplings M2

Pl = NM2 and masses
mn = m sin nπ

N , with n = 0 . . . N − 1. For large N this approximates one KK tower of a
compactified 5D supergravity theory, as should be expected for a discretization. Also, · · ·j
stands for the terms needed to make the mass terms invariant under the SUGC group
on site j. This is done by the standard procedure for adding gravitational interactions
(covariant derivatives and chiral compensator terms) to a flat space Kahler potential. The
analog in ordinary gravity is to write

√
gh2

µν instead of simply h2
µν in the mass term.

While we ascribe no meaning to the statement that these additional terms are “necessary,”
they are nevertheless helpful to guarantee that the low energy theory has diagonal SUGC
symmetry which gives it a chance at being phenomenologically viable.

How does sequestering work in theory space? Suppose we have some chiral field Φ1 on
site 1 and another chiral field ΦN on site N . Since Φ1 and ΦN are at different sites, we
can plausibly omit contact terms like Φ†1Φ1Φ

†
NΦN at tree level. But such terms will be

generated by quantum corrections, and we must estimate their size to see how they are
suppressed by the “distance” between sites 1 and N . Before doing that, it is instructive to
restore the broken SUGCN symmetry by promoting the Lagrangian to a non-linear sigma
model with the introduction of compensating goldstone superfields. As we saw in Section
5, a concise parameterization of the symmetry group can be made with a spinor superfield
Lα, so we include N − 1 spinor superfields, one for each link. The non-linear sigma model
is then

Lσ =
∑

j

M2
j E−1[Hm

j ,Σj ] (110)

+m2
jM

2
j

{

(Hm
j+1 −Hm

j + D̄α̇L
j
α + · · ·NL)2 +

9

4
(P j+1 − P j −

1

3
DαL

j
α + · · ·NL)2 + · · ·j

}

where the · · ·NL are the higher order, nonlinear, parts of SUGC transformations (cf. Eqns.
(96) and (98)). Now the Lagrangian has the full SUGCN symmetry under which the Lj

α

transform as bifundamentals. Explicitly (or rather, implicitly), the transformations are:

e2iHj → eε̄je2iHje−εj (111)

eΛj [L
α
j ] → eεjeΛj [L

α
j ]e−εj+1 (112)

We are using the notation of Section 5: the operators εj , Hj and Λj are all supervector
fields, (e.g. H = Hm∂m) and Λj [L

α
j ] invokes the spinor superfield parameterization; εj is

the SUGC on site j. We emphasize that there are only one set of coordinates x, θ, θ̄ and all
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the transformations are active transformations under which the fields transform and the
coordinates stay put.

The Lagrangians LU and Lσ present the same physical theory, in different gauges.
Indeed, Lσ reduces to LU after we use the extra symmetry to go to the gauge Lj

α = 0.
But the sigma model formulation is useful because we can now see why the UV completion
should respect locality in theory space: it must preserve the SUGCN symmetry. This
symmetry forbids tree-level contact terms involving Φ1 and ΦN . Of course, these terms
are generated through quantum corrections, but those are easy to estimate. There are a
few types of corrections, which are analogous to the corrections in the well-studied gauge
theory case [9].

First, there is the contribution from UV divergent gravity loops. Note that we can
decouple any of the links by taking Mj → ∞ holding Λj

5 = Mjm
4
j fixed. This works

because the only interactions with Λ5 strength are among the chiral goldstones Gj, coming
from Lj

α = DαG
j + · · · which do not mix sites. The proper procedure, according to naive

dimensional analysis is to include all the operators coupling the links with their proper
strengths. As we saw in the previous section (see also [12]), these have the form

Λ2

(

êj
Ĥ

c
j+1 − Ĥ

c
j

Λ

)p
(

∂

Λ

)q
(

Ĝ
c
j

Λ

)p

, (113)

where Ĥ
c

and Ĝ
c

are the canonically normalized metric and goldstone fields and

êj ≡
(

mj

Mj

)2/5

. (114)

Once we use a self-consistent form of the links, we see that each vertex connecting nearest
neighbors will have at least one factor of ê. A standard spurion argument then shows that
the UV contribution is at most

Λ2

M4
Pl

ê2(N−1)Φ2
1Φ

2
N . (115)

The second quantum contribution we are concerned with also comes from gravity loops,
but it is saturated in the IR and completely finite. It is easy to see why the 1-loop
contribution cannot vanish completely. If we run down to low energies, below the mass of
the first KK mode, m1 ∼ m/N ≡ 1

R the theory just appears to be 4D supergravity coupled
to the chiral fields Φ1 and ΦN , with a cutoff at 1/R. Since a 4D gravity loop diagram,
such as �H

Φ1

Φ1

ΦN

ΦN

(116)

knows nothing about locality in theory space, dimensional analysis with cutoff 1/R tells
us that this operator must appear with coefficient

1

16π2M4
PlR

2
Φ2

1Φ
2
N . (117)
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The amazing thing about deconstruction is that locality in theory space guarantees that
these diagrams really are cutoff at 1/R in the full theory (109).6 That is, the massive su-
pergravity modes regulate the divergences. Essentially, we know the diagrams are cut-off
because the only field configurations which contribute are non-local. In 5D the operator
requires a Wilson loop going around the whole space, and in deconstruction it requires ex-
tended field configurations which can be understood with the Coleman-Weinberg potential
(again, see [9]).

Now, there is one more way the operator Φ2
1Φ

2
N might appear. Since the theory space

Lagrangian LU (109) is non-renormalizable, we must imagine that it is eventually embedded
in a UV completion. Already, the cutoff dependence of (115) indicates that the gravity
sector is sensitive to UV effects and it is certainly consistent within the effective theory to
take this as the only contribution. But, by analogy with extra dimensional theories, we can
also imagine that there are “bulk” states near or slightly above the cutoff, Mbulk & Λ, which
couple to both site 1 and site N (or both branes in a continuum 5D theory), and to Φ1

and ΦN . In theory space, bulk states correspond to new fields at each site, with standard
nearest-neighbor hopping terms. Integrating these fields out at tree-level produces a third
contribution to non-local operators:

1

M2
bulk

(

N

RMbulk

)2(N−1)

Φ2
1Φ

2
N . (118)

In general, we expect Mbulk to be much larger than the inverse lattice spacing N/R, and
so this contribution is negligible for large N . But for small N it may be important.

Finally, let us formally take the continuum limit of the Lagrangian (109).7 At the
linearized level, we recover the 5D supergravity Lagrangian of [19], without the radion
field, and with our goldstones Lα representing their Ψα. Of course, this is exactly what
we expect, as we can use 5D symmetries to set Ψα = 0 and then restore these symmetries
with goldstone fields after the dimensional reduction. Note that the N = 2 supersymmetry
of 5D is non-linearly realized by the goldstones, as it must be because we have a consistent
theory with two (Weyl) gravitini.

8 Two Site Anomaly Mediation

As an example, to illustrate the simplicity of supergravity in theory space, we sketch a
2-site model of anomaly mediation. Anomaly mediation is a method of communicating
supersymmetry breaking to the standard model. It relies on the fact that soft-masses for
sfermions and gauginos are automatically generated in the presence of any supersymmetry-
breaking sector that couples to gravity, by virtue of the scale anomaly of the standard
model [6, 27]. Moreover, because the soft masses are related to the breaking of scale
invariance, they are completely determined by the anomalous dimensions of the standard
model fields.

The main advantage of anomaly-mediated supersymmetry breaking is that it solves
the supersymmetric flavor problem. Because the scalar masses are insensitive to UV

6With 2 sites there is a residual logarithmic divergence.
7This limit cannot actually be taken in a consistent quantum theory, see [13, 14]. Here we are just

making observations about a correspondence between degrees of freedom at the classical level.
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physics [6,27–29], the only flavor breaking spurions at low energy are the Yukawa matrices
and flavor-changing neutral currents are naturally suppressed by the superGIM mechanism.
For this solution to work, the anomaly mediated contribution must dominate other sources
of scalar soft masses. In particular, soft masses generated in the UV where there is flavor
physics at work are dangerous and need to be suppressed. Probably the simplest way of
achieving this involves sequestering a hidden sector with an extra dimension; if the stan-
dard model is confined to one brane, and the supersymmetry breaking sector to another,
dangerous operators are forbidden by locality. We can already see, by the considerations of
the previous section, that all propitious features of sequestered sector anomaly mediation
should be reproduced in theory space.

The simplest model has two sites:�SM hid . (119)

We put the standard model on site 1 and the hidden sector on site 2. Each site has its own
supergravity multiplet, and the sites only interact through a supergravity link. In unitary
gauge, where the link is eaten, the relevant part of the Lagrangian is

L =
1

2
M2

PlE−1[Hm
1 ,Σ1] +

1

2
M2

PlE−1[Hm
2 ,Σ2]

+ M2
Pl

1

R2

{

(Hm
2 −Hm

1 )2 +
9

4
(P 2 − P 1)

2 + · · ·1
}

(120)

+ (Q†Q+ . . .1) + (S†S + . . .2) .

Here we have only shown the Kahler potential part. Q stands for MSSM matter fields
and S is a hidden sector field. The · · ·j are the additional terms in the Kahler potential
required to make it invariant under the SUGC group on site j. This theory has a massless
supergravity multiplet Hm

1 + Hm
2 with Planck strength MPl and a massive supergravity

multiplet Hm
1 −Hm

2 of mass 1/R. We use R only to make contact with the parameters of
5D anomaly mediation, as this 2-site model clearly has no continuum interpretation.

We assume that the hidden sector chiral superfield S gets an F -term vacuum expecta-
tion value signaling the breaking of supersymmetry. This is communicated to the visible
sector just like in 5D anomaly mediation, through the massless supergravity mode, or
equivalently the F term of its chiral compensator Σ: 〈FΣ〉 ∼ 〈FS〉/MPl. Just as in 5D,
the gravitational anomaly is completely independent of UV physics and so masses of the
MSSM particles are proportional to their β functions. For example, sfermion masses are
roughly:

m2
s ∼

( α

4π

)2
〈FΣ〉2 . (121)

And, like in 5D anomaly mediation, some of the sleptons will be tachyonic. We will not
attempt to solve this problem here – we are merely replicating anomaly mediation in a two
site model.

The next step is to consider quantum corrections which generate contact terms between
the standard model and supersymmetry breaking sector. The biggest danger comes from
soft masses coming out of contact terms like Q†QS†S generated by UV physics. But, as
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we have argued in the previous section, these operators are highly constrained by locality
in theory space. In the 2-site model, the contribution from massive fields at the cutoff (cf.
(118) with Mbulk ∼ Λ) is of order

∆Lbulk ∼
1

R2Λ4
Q†QS†S . (122)

And the contribution from gravity loops (cf. (115)) is

∆LUV ∼
1

M2
Pl

(

1

MPlR

)12/5

Q†QS†S . (123)

If we take the cutoff to be around the strong coupling scale Λ ∼ (MPlR
−4)1/5 both of

these terms are suppressed by powers of R. We can easily achieve more suppression with
additional sites.

In addition to UV contributions, there is also the finite IR contribution at one loop (cf.
(117)):

∆LIR ∼
1

16π2M4
PlR

2
Q†QS†S . (124)

These operators can be important because they contribute to scalar masses:

δm2
s ∝

1

16π2M4
PlR

2
〈FS〉2 . (125)

The analogous continuum contribution was calculated recently in [30] and [31] and was
found to be negative. We should expect the same sign for (125) and therefore it cannot
be immediately used to ameliorate the problem of tachyonic sleptons, as one might have
hoped.

9 Conclusions

In the first several sections of this paper, we presented and analyzed a natural interacting
theory of massive supergravity. It is given by the Lagrangian (1). On shell, this theory
contains a massive supergravity multiplet containing a spin-2, a spin-1 and two spin 3/2
fields all degenerate in mass. The Lagrangian is constructed using the 4D N = 1 superfield
formalism, so it manifestly preserves global supersymmetry. We have demonstrated the
validity of the Lagrangian in three ways: first, with a formal analysis using spin projectors,
second, using the explicit component expansion of both the bosonic and fermionic sectors,
and finally using goldstones. This last method is particularly useful as it leads to an
efficient way to study the interactions in the theory. Indeed, part of the justification of our
Lagrangian is that it contains only the fields of minimal supergravity, and so the interactions
and (broken) symmetries of the theory can be simply lifted from the massless case. With
other linearized Lagrangians, such as the ones in [1], there are additional auxiliary fields
whose symmetry properties are unknown. Therefore, working out the effect of the mass
term on their interactions appears prohibitively difficult. Curiously, while attempting such
a program we came across a mysterious alternative to the Fierz-Pauli Lagrangian for a
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massive graviton invoking an auxiliary vector field (5). As far as we know, this Lagrangian
was not presented previously, and it may be of interest in its own right.

Returning to massive supergravity, we found by merging the goldstone formalism for
gravity developed in [12] and the representation of supergeneral coordinate transformations
from [23] that massive supergravity has the same scale of strong interactions as massive
(non-supersymmetric) gravity. Namely, it breaks down at Λ5 = (MPlm

4)1/5. We worked
out the form of the strongest interactions in terms of a chiral multiplet of goldstones.
This multiplet, in unitary gauge, comprises the scalar longitudinal mode of the graviton,
the gravitino’s chiral conjugate, and a scalar auxiliary field. One might describe it as
the chiral supergoldstone of a real superfield containing the graviton’s vector longitudinal
polarizations, a Dirac goldstino, and a vector auxiliary field. In Section 6 we simply called
it G. The most critical feature of G is that it only gets a kinetic term from mixing with
the metric superfield. The consequences of this mixing in supergravity are just as dire as
for non-supersymmetric gravity: it leads to vDVZ type discontinuity as the mass is taken
to zero; it causes the gravitational field around massive sources to break down at distances
much larger than the Schwarzschild radius; and it prevents the reproduction of long distance
supergravitational phenomena on a lattice. We have not actually demonstrated any of this,
but the results follow trivially from the kinetic mixing and the logic in [12]. One might
have hoped that the gravitino would miraculously cancel the troublesome amplitudes in
graviton scattering which cause these effects, but this does not happen. One might also
have hoped to unravel the strange holographic-type bounds which turned up in the lattice
investigation of [13,14], especially considering supersymmetry’s role in consistent theories
of quantum gravity. But again, supersymmetry is of no help.

On the brighter side, the Lagrangian for massive supergravity naturally leads to theory
space versions of sequestered sector models. In such models, visible and hidden sector
fields are physically separated in an extra dimension, so that couplings between them
are suppressed. We have shown that the same dangerous operators can be suppressed
in a purely 4D theory by the addition of massive supergravity modes with prescribed
couplings. Locality in theory space serves the same proscriptive function as locality in
an extra dimension. We considered in particular a 2-site model of anomaly mediation.
Working through the relevant corrections, by dimensional and symmetry analysis, we found
that deconstruction can reproduce the phenomenological success (and failures) of a 5D
anomaly mediated model.

Our goal in the analysis of deconstruction was to exhibit the correspondence between
supergravity in 5D and in theory space, particularly in regard to issues of locality. In
this vein, deconstruction provides a useful tool for studying extra dimensions. But it is
also true that these theories have space to improve on the extra dimensional models, as
4D effective theories are less restrictive. For example, the radion can be simply thrown
out. If the radion, or some other light field, ever proves to be useful in a compactified
extra dimensional model, it can easily be co-opted into a theory space Lagrangian. But
it is equally possible that fields with no extra dimensional interpretation at all will prove
advantageous.
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